Let G be a grammar s-0B | 1A, A - 0 | 0S | 1AA, B- 1 | 1S | 0BB
* Let G be a grammar s →0B | 1A, A → 0 | 0S | 1AA, B→ 1 | 1S | 0BB. For the string 00110101,
find
(i) leftmost derivation
(ii) rightmost derivation
(iii) derivation tree
Ans. (i) S → 0B → 00BB → 001SB → 0 01SB → 0 01/AB → 00110B → 0 01101S → 0011010B → 00110101
Ans. (ii) S → 0B → 00BB → 00B1S → 00B10B → 00B101 → 001S101 → 0011A 10 → 00110101
Ans. (iii)
S1
/ \
0 B2
/ | \
0 B3 B6
/ \ | \
1 4S 1 S7
/ \ | \
1 5A 0 B8
| |
0 1
S1
/ \
0 B2
/ | \
0 B6 B3
/ | | \
1 S7 1 S4
| | \
A8 0 B5
| |
0 1
(Ans. iii)
Comments
Post a Comment
Please do not enter any spam link in the comment box.