Show that in a group (G,ₒ),(a ₒ b)-1 = (b-1 ₒ a-1)∀a,b∈G
Ans.
Given,
(G,ₒ) is a group.
Now, (a ₒ b) ₒ (b-1 ₒ a-1)
= a ₒ (b ₒ b-1)ₒ a-1 (using associative property of G)
= a ₒ e ₒ a-1 [∵ bₒb-1=c, the identity]
= a ₒ a-1
= e
Similarly, (b-1 ₒ a-1) ₒ (a ₒ b)
= b-1 ₒ (a-1 ₒ a) ₒ b
= b-1 ₒ e ₒ b
= b-1 ₒ b
= e
Clearly, (b-1 ₒ a-1) is the inverse of (a ₒ b)
i.e, (a ₒ b)-1 = (b-1 ₒ a-1)
(Proved)
Comments
Post a Comment
Please do not enter any spam link in the comment box.