Skip to main content

Spiral Model Definition, Spiral Model Application, Advantage, Disadvantage

SPIRAL MODEL


Definition -

The spiral model is one of the most essential Software Development Life Cycle models, which provides support for Risk Handling. In its diagrammatic representation, it looks like a spiral with many loops. The exact number of loops of the spiral is unknown and can vary from project to project. Each loop of the spiral is called a Phase of the software development process. The exact number of phases needed to develop the product can be varied by the project manager depending upon the project risks. As the project manager dynamically determines the number of phases, so the project manager has an important role to develop a product using the spiral model.
At any point, the Radius of the spiral represents the project's expenses(cost) so far, and the angular dimension represents the progress made so far in the current phase.


SPIRAL MODEL
(SPIRAL MODEL)


Based on the customer evaluation, the software development process enters the next iteration and subsequently follows the linear approach to implement the feedback suggested by the customer. The process of iterations along the spiral continues throughout the life of the software.


Spiral Model Application -
  • When there is a budget constraint and risk evaluation is important.
  • For medium to high-risk projects.
  • Long-term project commitment because of potential changes to economic priorities as the requirements change with time.
  • Customer is not sure of their requirements which is usually the case.
  • Requirements are complex and need evaluation to get clarity.
  • The new product line which should be released in phases to get enough customer feedback.
  • Significant changes are expected in the product during the development cycle.


ADVANTAGES -
  • Changing requirements can be accommodated.
  • Allows extensive use of prototypes.
  • Requirements can be captured more accurately.
  • Users see the system early.
  • Development can be divided into smaller parts and the risky parts can be developed earlier which helps in better risk management.


DISADVANTAGES -
  • The end of the project may not be known early.
  • Not suitable for small or low-risk projects and could be expensive for small projects.
  • The process is complex.
  • The Spiral may go on indefinitely.
  • A large number of intermediate stages require excessive documentation.

Comments

Popular posts from this blog

All About Microservices Architecture

All About Microservices Architecture **Microservices Architecture** is an approach to software development where a large application is broken down into smaller, independent services that can operate and be deployed independently. Instead of building a monolithic application, which is a single, tightly-integrated unit, microservices architecture divides the functionality into separate services that communicate with each other through well-defined APIs (Application Programming Interfaces). Key characteristics of microservices architecture include: 1. **Modularity:** Each microservice represents a specific business capability and can be developed, deployed, and scaled independently. 2. **Independence:** Microservices are autonomous, meaning they can be developed, deployed, and updated without affecting the entire system. This independence allows for faster development cycles. 3. **Scalability:** Since each service is independent, you can scale only the specific microservices that require...

Relational Calculus

Relational Calculus There is an alternate way of formulating queries known as Relational Calculus. Relational calculus is a non-procedural query language. In the non-procedural query language, the user is concerned with the details of how to obtain the end results. The relational calculus tells what to do but never explains how to do. Most commercial relational languages are based on aspects of relational calculus including SQL-QBE and QUEL. Why it is called Relational Calculus? It is based on Predicate calculus, a name derived from branch of symbolic language. A predicate is a truth-valued function with arguments. On substituting values for the arguments, the function result in an expression called a proposition. It can be either true or false. It is a tailored version of a subset of the Predicate Calculus to communicate with the relational database. Many of the calculus expressions involves the use of Quantifiers. There are two types of quantifiers: Universal Quantifiers: The univer...

Natural Language Processing (NLP)

What is Natural Language Processing (NLP) ? Natural Language Processing (NLP)* is a field of artificial intelligence (AI) that focuses on the interaction between computers and humans using natural language. It involves the development of algorithms and models that enable computers to understand, interpret, and generate human language. Here are key aspects of NLP: 1. *Text Understanding:* NLP systems aim to comprehend the meaning of written or spoken language. This involves tasks such as text classification, sentiment analysis, and named entity recognition. 2. *Speech Recognition:* NLP extends to processing spoken language, converting audio signals into text. This technology is used in voice assistants, transcription services, and more. 3. *Language Generation:* NLP systems can generate human-like text. This is employed in chatbots, language translation services, and content generation. 4. *Machine Translation:* NLP is fundamental to machine translation systems that enable the automatic...