Skip to main content

C vs CPP / C vs C++

C vs C++

C vs C++
(Image by - Sharma Guides | Subham232330)


C

  • C was developed by Dennis Ritchie.
  • C is a procedural programming language.
  • C is a function-driven language.
  • Top-down approach is used in program design.
  • For Example:- C, Pascal.


C++

  • C++ was developed by Bjarne Stroustrup.
  • C++ is object-oriented programming language.
  • C++ is an object-driven language.
  • Bottom-up approach is used in program design.
  • For Example:- C++, Java.



Comments

Popular posts from this blog

Natural Language Processing (NLP)

What is Natural Language Processing (NLP) ? Natural Language Processing (NLP)* is a field of artificial intelligence (AI) that focuses on the interaction between computers and humans using natural language. It involves the development of algorithms and models that enable computers to understand, interpret, and generate human language. Here are key aspects of NLP: 1. *Text Understanding:* NLP systems aim to comprehend the meaning of written or spoken language. This involves tasks such as text classification, sentiment analysis, and named entity recognition. 2. *Speech Recognition:* NLP extends to processing spoken language, converting audio signals into text. This technology is used in voice assistants, transcription services, and more. 3. *Language Generation:* NLP systems can generate human-like text. This is employed in chatbots, language translation services, and content generation. 4. *Machine Translation:* NLP is fundamental to machine translation systems that enable the automatic...

JS Code for Generating OTP

JS Code for Generating OTP -  * Learn how to create a simple JavaScript function to generate a random 4-digit OTP. (GENERATED BY - ChatGPT) function OTP() { let otp = ""; otp = Math.floor(Math.random() * 9000 + 1000); return otp; } console.log("Your OTP is-", OTP());

All About Microservices Architecture

All About Microservices Architecture **Microservices Architecture** is an approach to software development where a large application is broken down into smaller, independent services that can operate and be deployed independently. Instead of building a monolithic application, which is a single, tightly-integrated unit, microservices architecture divides the functionality into separate services that communicate with each other through well-defined APIs (Application Programming Interfaces). Key characteristics of microservices architecture include: 1. **Modularity:** Each microservice represents a specific business capability and can be developed, deployed, and scaled independently. 2. **Independence:** Microservices are autonomous, meaning they can be developed, deployed, and updated without affecting the entire system. This independence allows for faster development cycles. 3. **Scalability:** Since each service is independent, you can scale only the specific microservices that require...